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ABSTRACT 

We prove an  e lementa ry  formula  about  the  average expans ion  of cer- 

ta in  p roduc t s  of 2 by 2 matr ices .  This  pe rmi t s  us  to quickly re-obta in  

an  inequal i ty  by M. H e r m a n  and  a t heo rem by Dedieu and  Shub,  bo th  

concerning Lyapunov  exponents .  Indeed,  we show tha t  equal i ty  holds in 

H e r m a n ' s  result .  Finally, we give a result  abou t  the  growth  of the  spectral  

radius  of  products .  

1. I n t r o d u c t i o n  

A major problem in smooth ergodic theory is to determine whether a given 

measure-preserving diffeomorphism has a non-zero Lyapunov exponent. This 

problem is also of interest in the more general setting of linear cocycles. How- 

ever, it is difficult to show the existence of non-zero exponents without strong 

conditions like uniform hyperbolicity. 
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In [He], Herman devised a method to bound the upper Lyapunov exponent of 

some cocycles from below and constructed the first examples of non-uniformly 

hyperbolic two-dimensional systems with a positive exponent. Such examples are 

very delicate: it is shown in [Bo] that the exponent of non-hyperbolic cocycles 

drops to zero with an arbitrarily small C°-perturbation of the coeycle. 

One of the methods of Herman estimates the average of the upper Lyapunov 

exponent of systems in a special parametrized family. While each individual sys- 

tem may be unstable, this average estimate is robust. Using Herman's estimate, 

Knill proved in [Kn] that among bounded measurable SL(2, lR)-cocyeles those 

with a positive exponent are dense. 

This idea to consider systems included in some suitable family and to show 

that global properties of the family imply good properties for many individual 

elements - -  is also present in the recent paper [DS]. This reasoning has been 

conjectured to work in more generality in [BPSW]. 

We will consider the following situation: take matrices A1,... ,An in SL(2, R). 

Of course, the norm IIAn-'" Alll can be much smaller than I-[ IIAjll • Now we put 
those matrices inside a family parametrized by a circle: Aj,o = AjRo (we indicate 

by Ro a rotation of angle 0). Instead of looking at the norms, we will deal with 

the related quantity 
IIAII + IIAII - I  

N(A) = log ( 
2 )" 

In this note we will prove: 

1 f2~ 
Jo N(An,o.. .Al,o)dO = ~ N ( A j ) .  

j = l  

In particular, if the ItAjll are large then ttAn,o... Al,oll is of the order of [I  [IAjtl 
for most values of 0. 

The formula allows us to conclude that the mentioned bound of [He] is sharp 

and also to re-obtain one theorem of [DS]. 

A similar formula, involving spectral radius, also holds. This motivated us 

to investigate whether, for cocycles in general, the spectral radius grows like 

the norm. This problem was posed by Cohen in [Co]. The answer, at least in 

dimension 2, is no, in general. 

2. T h e  fo rmula  

Notation: Given a real or complex matrix A, we denote: 

IIAII = sup IIAvll where I1" I] is the euclidean norm. IIvll 
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Also, we denote by p(A) the spectral radius, that  is, the maximum absolute 

value of the eigenvalues of A. We have p(A) <_ [IAN. We will indicate by SL(2, R) 

the group of real two-by-two matrices with unit determinant and PSL(2, R) = 

SL(2, R)/{+I}.  We define: 

N(A) = log(  ][A]]+ ]IA]]-I) for A e SL(2, R). 
2 

We define some special matrices in SL(2, R): 

( cos0  - s i n 0  
Ro= \sinO cos0 ] f o r 0 E R .  

(0 0) Hc -- c-1 for c _> 1. 

Finally, we indicate by D the open unit disk in C and by S 1 its boundary. 

Our main formula is: 

THEOREM 1: Let A1 . . . .  ,An E SL(2, R). Then 

1 f2~ 
Jo X(AnRo...A1Ro)aO = N(As). 

j = l  

Actually, Theorem 1 is a corollary of the formula below: 

THEOREM 2: Let A1 .... ,An C SL(2, R). Then 

log p(AnRo"" AIRo)dO = N(Aj). 
j = l  

Theorems 1 and 2 are proved in sections 3 and 4 below. 

Notice that log HA]]- log2 < N(A) <_ log I]A][. Let's give an interpretation of 
the quantity N(A) through the following proposition: 

PROPOSITION 3: Let A E SL(2,]R). Then 

1 f 2 ,  N(A) -- ~ Jo log[lA(cos0,sin0)lld0. 

Therefore the number N(A) can be viewed as the "average rate of expansion" 
of the matrix A E SL(2, JR). 

Proo~ By the polar decomposition theorem, one can find numbers (~,/~ E [0, 21r] 

and c >_ 1 such that A = R3HcRa. Moreover, IIAll = c. S o  w e  may suppose that 

A = He, and we have to prove 

1 f2rlog + = log V/c 2 cos 2 0 c -2 sin 20dO (c + C-1"~ 
Jo k 2 / 
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First we calculate 

We have 

A. AVILA AND J. BOCHI 

f0 7~ F(b) = log(b 2 cos 2 0 + sin 20)dO. 

Isr. J. Math. 

fo ~ f + o~ dx 2 ~r dO - 2b = 
F'(b)=2b b 2+tan  20 ~_~  (b 2 + x 2 ) ( l + x  2) b + l "  

(The last integral can be calculated by residues.) The solution of this differential 

equation with initial condition F(1) = 0 is F(b) = 2~r log ½ (b + 1). Therefore 

f02~ 1 logv/e2eos20+c-2sin2OdO= -2~ logc+  F(c 2) =27~1og~(c+c-1 ) .  | 

The corollary of Theorem 1 below is based on an idea from [Kn] and justifies 

the assertion made in the Introduction: 

COROLLARY 4: Let A1,. . . ,A~ E SL(2, R), a > 0 and 

{ I E  } E = 8 E [0,2~]: 1 log[]AnRo ..A,Re[[ > - a +  log[[Aj[[ 
n n 

Let u denote the normalized Lebesgue measure in the circle. Then u(E) > 
1 - ( log 2 ) / a .  

1 Proo~ Let f (O)= ¼U(AnRo..  "A1Ro) and M = ~ 7~,s(aj) .  Let 

F - - { 0 : f ( 0 ) > M - b } ,  

where b = a - log2. It is easy to see that F C E. Since 0 _< f(O) <_ M + log2, 

we have 

M = Jfd, < (M - b)(1 - u(F)) + (M + log2)u(F).  

This gives 
b log 2 

u( E ) >_ u( F ) >_ b + log~ - l - --a | 
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3. P r o o f  o f  T h e o r e m  2 

The proof is based on complexification methods from [He]. 

By continuity, we only have to prove the theorem for a dense set of matrices 

Ai. So we can make the following assumption: 

Bo = AnRo. . .  A1Ro (: +I for all 0. 

Define the following complex matrices: 

z + z  1 z _ z  -1  ) 
S~ 2 2i for z C C*, Z__Z--1 Z~Z -1  

2i 2 

T~ = 2 2i for z C C. Z2--1 z 2 
2i 21  

We have T~ = zSz and Seio = Ro. 
Given A1,.. .  ,An C SL(2, N), we define 

n 

Cz = n AjTz = AnTz ... A1Tz 
j = l  

for z C C. 

LEMMA 5: There are holomorphic functions A1, A2:113 --+ C, which extend con- 
tinuously to D, such that {Al(z), A2(z)} are the eigenvalues of Cz and [A2(z)[ < 

I/~I(Z)I for every z C D. 

Lemma 5 implies that  logp(Cz) is a harmonic function in the disk D which 

extends continuously to the boundary. Moreover, 

Z -= e iO 

Therefore 

n n 

II 
j = l  j = l  

/o iI 2-~ logp(  AjRo)dO = logp(Co). 
j = l  

So the proof of Theorem 2 will be complete once we prove Lemma 5 and the 

lemma below: 

n ~(][Aj[[ + [[Ajl I LEMMA 6: The eigenvalues of Co are zero and Hj=I 1 -1).  

3.1 Proof of Lemma 5: It  is enough to show that  the eigenvalues of Cz have 

different norms for all z E D. First we obtain the following criteria for identity 

of their norms: 
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LEMMA 7': Let C E M(2, C) with d e t C  -~ 0 and let )~1,)~2 be the eigenvalues of 

C. Then ]All -- [A2[ if  and only if  

( t rC)2 /4de tC  e [0, 1]. 

Proofi Let t = A1/A2. We have u = ( t rC)2 /4de tC  = ¼(t + t -~ + 2). Then  

t + t  -~ 
2 

E [ -1 ,  1] ~:~ u e [0, 1]. | 

We have det Tz = z 2 and so det Cz = z 2n. Therefore Cz has eigenvalues 

wi th  equal modulus  if and only if (trCz)~/4z 2n E [0, 1], t ha t  is, if and only if 

Q(z) = t rCz /2z  n E [ -1 ,1] .  So to prove L e m m a  5 we must  prove tha t  if z E D 

then  Q(z) ~ [ -1 ,1 ] .  The  idea is t ha t  since Q(z) is a ra t ional  m a p  of degree 

at  most  2n, this can be checked by showing tha t  the unit  circle ' exhaus t s '  all 

pre images  of [ -1 ,  1]. This  we will do with a topological  a rgument .  

Let  S = Q - l ( [ - 1 , 1 ] ) .  

LEMMA 8: If  S n S 1 has at least 2n connected components then S is the union 

of 2n sub-intervals ors  1. 

Proofi Notice tha t  tr  Cz is a polynomial  of degree at  most  2n, so Q(z) and Q~(z) 

are ra t ional  maps  of degree a t  most  2n. Since Q(S 1) c R we know tha t  there is 

at  least one 0 of Q~(z) in each component  of S 1 \ S. In par t icular  there are no 

zeros of Q~(z) in S, which implies tha t  each connected componen t  of S N S 1 is 

m a p p e d  diffeomorphically onto [ -1 ,  1]. | 

Define the  following sets: 

X = PSL(2,  R) \ {I},  

Y = { A  e X:  [ t rA]  <_ 2}. ([ t r  I is well-defined in PSL(2,]R).) 

LEMMA 9: There  exists a continuous •nction F: X -~ S 1 such that F - l ( { 1 } )  = 

Y and tha t  the induced homeomorphism F#:  7rl(X) --+ ~1($1) is an isomorphism. 

Proof'. Let A C PSL(2,  R). I f  A C Y then  we define F(A) = 1. Otherwise 

A has two eigendirections ~ v  and +w,  where v, w C S 1 C C, with associated 

eigenvalues A and A -1 ,  where IAI > 1. We then  define F(A) as v2/w 2. I t  is easy 

to see t ha t  F is continuous a t  every A ~ I .  

We have r l ( X )  = Z (it is equal to ~I (PSL(2 ,  JR)), since PSL(2,  •) is a three- 

dimensional  manifold) and so it is enough to exhibit  a closed pa th  7 generat ing 

~ I ( X )  such tha t  F o ~f has degree one. 
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Let 7:S1 - '+  X be defined as e ~e F-+ Ro/2M, where M • X is symmetric.  Using 

the identities F ( A  T) = F(A)  and F ( R ~ I A R e )  = F(A) ,  we easily see that  F o 

commutes with conjugacy (F  o 7(~) = F o 7(z)). Furthermore, e i° = 1 is the 

only value such that  "~(e i°) is symmetric,  which is equivalent to F(7(ei°)) = -1 .  

This implies that  F o 7 has degree one. | 

~ tr  Be. Notice that  e ie • S if and Let Be = 1-Ij=l AjRo. We have Q(e ie) = -~ 

only if Be is an elliptic or parabolic matrix in SL(2, ]~). 

LEMMA 10: S n S 1 has a t / e a s t  2n connected components. 

Prooi~ Let g: S 1 -+ PSL(2, R) be defined by e ie ~-+ R0/2. This is clearly a 

generator of the fundamental group of PSL(2, R). 

Notice that  e ie ~-+ Be can also be seen as a path  in PSL(2, •) and it follows 

from the definition that  it is homotopic to g2n (by the fact that  PSL(2, R) is a 

group). Now we use the assumption made at the beginning: for all 0, B0 ¢ + I .  

In this case, the path F o Be has degree 2n and therefore the preimage of 1 

has at least 2n connected components. This set coincides with S A S 1. | 

Lemmas 8 and 10 imply that  S C S 1, and Lemma 5 is proved. | 

3.2 Proof of Lemma 6: We will list some facts to be used: 

(1) One can find numbers (~j,/~j C [0,27r], cj _> 1 such that  Aj = R~ jHc jR~  

for each j .  Moreover, Ildyll = cj. 

(2) A , B  • SL(2,]R) ~ p(AB)  = p(BA) .  

(3) For every 0 • JR, RoTo = ToRe = e-i°To. 

Part  (1) is the polar decomposition theorem. For (2), notice that  the spectral 

radius depends only on the trace. For (3), we use that  SzSw = Szw. This implies 

TzTw = Tz~ and 

RoTo = Se,o To = e-i°Te,o To = e-i°To. 

Using (1), (2) and (3), we obtain 

j = l  j = l  

Each matr ix  ToHcj has an eigenveetor ( - i ,  1) with corresponding eigenvalue 

1(cj2 + cj-1) • Therefore 1-I~.=1 ToH~j has an eigenvalue 

I-I( j + c;1)/2, 
J 
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while Co is not invertible. This proves Lemma 6 and hence Theorem 2. | 

4. P r o o f  of  T h e o r e m  1 

Let Bo = AnRo."  A1Ro. Then, fixing 0 we have, by Theorem 2, 

1 fo 2~ log p( BoRo, )dO' = N ( Bo ). 

On the other hand, fixing 0 p we have, again by Theorem 2, 

1 f2~ 1 fo 2~ logp(AnRo"" (AIRo,)Ro)dO "~ Jo ]ogp(BoRo,)dO = 

= N(A1Re,) + N(Aj) = E N ( A j ) .  
j = 2  j = l  

Then 

1 / 2~ 1 f02~ 1 f2~ = 2-~ Jo N(Bo)dO= -~ ~ Jo logp(BoRo,)dOdO' ~ N(Aj). 
j=l 

This proves Theorem 1. | 

Remark: Inversely, Theorem 2 could be quickly deduced from Theorem 1, using 

logp(A)= lim llogllAnll  = lim N(An) 
n--~ c~ rt  n - ~ c ¢  / t  

5. Herman's inequality re-obtained 

Let (X, #) be a probability space and T: X --+ X an ergodic transformation. Let 
A: X -4 SL(2, •) be a measurable function satisfying the integrability condition 

log [[A[Id # < o o .  

We denote for x C X and n E N, 

An(x) : m(Tn-lx) ... d(x). 

The function A is called a l inear  cocycle .  In these conditions, there exists 
(see [FK] or [Le D a number A+(A) > 0, called the u p p e r  L y a p u n o v  e x p o n e n t ,  

such that 
A+(A) = lim -1 logIlm'~(x)[I for #-a.e. , e X. 

n--~+oo r t  
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For 0 • JR, we define a cocycle ARo by (ARo)(x) = A(x)Ro. Clearly, 

0 ~-+ A+(ARo) is a measurable fimction. 

We now state Herman's inequality: 

THEOREM 11 ([He], §6.2, see also [Kn]): If T, # and A are as above then 

Remark: 

1 2~ ( I]A(x)ll +-~ IA(x)]l-1 )dp(x). 
-~ ~o A+(AR°)dO >- /x l °g  

Herman's inequality was stated in a different (but equivalent) way, 

involving the Iwasawa decomposition. 

We will re-obtain Theorem 11 and also show that equality holds. 

THEOREM 12: If T, # and A are as above then 

1 27r (I]A(x)I ] +_~[A(x)ll_l)d#(x). 

Proof: Recall that N(A) <_ log IIAI] < log2 + N(A). By Theorem 1, 

n--1 1 f27r n--1 
E N(A(TJ(x))) <- ~ Jo log ][(ARo)n(x)HdO <_ log2 + E N(A(TJ(x)))" 
j=o j=o 

Therefore, by Birkhoff's theorem, 

lim 1 f0 2~ -l log ]](AR0)n(x)]ld0 = /N(A(x))dp(x)  for a .e .x.  
n-4oo ~ n 

To finish the proof we must check that Dominated Convergence applies. We have 

1 1 n-1 
0 _< - log ]](ARe)~(x)]] <_ - E log ]]A(TJx)]] = f~(x). n n j=0 

{fn} is the sequence of Birkhoff means of the function logHAI] • nl(#) .  In 

particular, {fn(X)} is bounded for a .e .x.  | 

Example 13: Consider the cocycle ([He], § 4.1) where T: S 1 -+ S 1 is an (uniquely 

ergodic) irrational rotation, A: S 1 ~ SL(2, [~) is given by A(e it) =HcRt and 

c _> 1 is fixed. We have (ARe)n(z) = A~(ei°z) and therefore A+(A) = A+(AR0) 

for all 0. It follows from Theorem 12 that A*(A)= log(½(c "~ c--l)).  
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6. A t h e o r e m  by Ded i eu  a n d  Shub  re-obtained 

We will use Proposition 3 and Theorem 2 (in the case n = 1) to give another 

proof of the following theorem by Dedieu and Shub: 

THEOREM 14 ([DS]): Let # be a probability measure in SL(2, R) such that the 
integral f log IIAlldI~(A) is finite. Suppose that # is invariant by rotations, that 

is, R~# = # for all 8. Let A1,A2,... E SL(2, •) be independent random matrices 
with law # and consider the associated upper Lyapunov exponent: 

Then 

Proof: 

A + = lim a-logllAn...Alll (w.p. 1). 
n--++oo n 

A + = ] log p(A)dp(A). 
Js L(2,~) 

,~+= f fo~logHAe~°H~fl~du(A) 
= f U(A)dp(a) 

= f fo2~logp(ARo)~-~du(A) 
= fo2~ f logp(ARo)du(A)~ 
= f p(a)d#(A) 

(by Furstenberg's formula, see [Le]) 

(by Proposition 3) 

(by Theorem 2 with n = 1) 

(since logp(dRo) <_ log I[d[I • L 1) 

(since # is invariant by rotations). 

7. Growth of  the spectral radius 

Let X, p, T and A be as in section 5. In view of our results, it is somewhat 

natural to ask about the behavior of the spectral radius of the matrix A n(x) 
This question was already raised in [Co]. We have the following when n --+ cx). 

result: 

THEOREM 15: Suppose T is invertible. Then for #-a.e. x E X,  

lim sup I log p(A n (x)) = A + (A). 
n--+oo n 

1 Before giving the proof, we point out that in general the limit of ~ log p(A n (x)) 

does not exist. Furthermore, the relation 

(*) tim sup 1~-+oo f l°gp(An)d#-=- )~+(A) 
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is in general false, as is shown by the following: 

Example 16: Let X = {0, 1} z, # be the (½, ½)-Bernoulli measure and let T: X --4 

X be the left shift. We define a cocycle A: X --4 SL(2, N) by: 

H = H2 if x0 = 1, 
A ( { x i } i e g )  = l if ( X _ l ,  X0, X l )  = (0, 0, 0) or (1, 0, 1), 

R=RTr/2 i f (x - l , xo ,x l )= (1,0,0) or (0,0,1). 

Given any sequence x = {xi}iez, split it in minimal blocks starting with 1, as, 

for instance, 

. . .  (10) (1) (1000) (100)(10) (100000) (1) . . .  

The corresponding splitting for the sequence {A(Ti(x))} is, in this case, 

... (HI)(H)(HRIR)(HRR)(HI)(HRIIIR)(H). . .  

The product of the matrices in each block is always +H .  It follows that ,~+ (A) = 

½log 2. On the other hand, making substitutions R 2 = - I  in the product An(x), 
we obtain one of the possibilities: ~H k, +HkR, =t=RH k or =t=RHkR. Since 

p(HkR) = p(RH k) = 1, we have p(An(x)) = 1 infinitely often for a .e .x.  Besides, 

it's not hard to show that  (*) does not hold. 

Proof of Theorem 15: We may regard the problem as being posed in PSL(2, R) 

instead of SL(2, I~). Suppose that A+(A) > 0 (otherwise there is nothing to 

prove). Consider (see [Le D the Oseledets splitting R 2 = E+(x) • E-(x), defined 

for a.e. x • X, where E + (resp. E - )  is associated to the exponent A+(A) (resp. 

-A +(A)). By Oseledets' theorem, 

lim -1 log sin z~(E + (Tnx), E-  (Tnx)) = O. 
n--+oo n 

For each x, take B(x) • PSL(2, R) that sends the direction N(1,0) (resp. 

N(0, 1)) to the direction E+(x) (resp. E-(x)). This defines a.e. a measurable 

function B: X --* PSL(2, R) such that 

lim -1 logllB(Tnx)ll = 0 for a .e .x .  
n--coo ~t 

We claim that 

liminfllB(x)-'B(Tnx) - I H = 0 for a .e .x .  
n--~oo 

To prove it, let e > 0. Consider a countable cover of PSL(2, N) by open sets 

Uj = {M • PSL(2, R): JIM - Mjl I < (fj}, where 25j(IIMjl I +Sj) < e. 
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Define Vj = B-I (Uj )  c X and 

Vj = { x e Vj: Tn(x) 6 Vj for infinitely many n 6 N}. 

By Poincar6's recurrence theorem, #(Vj) -- p(Vj). If x e Vj then, for infinitely 

many n C N, we have 

I IB(x) - 'B(Tnx)  - I[I < l IB(Tax) - B(x)I  I • IIB(x)II < 25j(IIMjll + 5~) < ~. 

Therefore l imin f i [B(x ) - lB(Tnx)  - I[[ <_ c for every x in the full measure set 

U vJ. This proves the claim. 

To prove the Theorem it 's enough (since p + p-1 = max{ I tr  I, 2}) to show tha t  

l imsup 1 log I t rAn(x )  t = A+(A). 
n - - + ~  / t  

By construction,  the matr ix  H(x) = B ( T x ) - I A ( x ) B ( x )  is diagonal. We have 

An(x) = B(Tnx)Hn(x )B(x )  -1 and, in particular,  lira ~ log l[Hn(x)[I = A+(A). 

Write B(x)- IB(T '~x)  = (bij(n,x))i,j=l,2. For a.e. x, we know tha t  there are 

infinitely many n e N such tha t  

1 
[b l l ( n , x ) -  1[,]b22(n,x)- 11 < 2" 

The  matrices An(x) and B ( x ) - I B ( T n x ) H n ( x )  have the same trace, so 

I trAn(x)l  = I t r (B(x ) - lB(Tnx)Hn(x) ) l  

: - I [b l l (n ,  x) . IIHn(x)ll q-b22(n,x)- IIHn(x)ll-1]l 

> ~,,Hn(x),, - ~{,Hn(x)l[ -1. 

The  result follows. | 
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